

Thermally Assisted Vapour Introduction Atmospheric Pressure

Photoionization MS/MS

(TAVI APPI MS/MS)

Davin Carter ¹, Hendrik Kersten ², Thorsten Benter ², Rob O'Brien ¹

- 1.) Okanagan Regional Chemical Analysis Centre, University of British Columbia Okanagan
- 2.) Department of Physical and Theoretical Chemistry, University of Wuppertal

Outline

Context of research

Atmospheric Pressure Photo Ionization (APPI)

Apparatus

Results

Future work

Big Picture

Rapid analysis, no clean up, no separation

Specific Analytical Challenge

Synthetic, specifically inorganic, chemists needed quick confirmation of synthesis

Some compounds insoluble usual solvents

Noticed target compounds had aromaticity

MS been widely used

El GC volatile high energy electrons result in fragmentation

ESI only for ions in solution

APCI competitive gas phase reactions with matrix effects, requiring separation

MALDI low sensitivity, high background

LDI competitive gas phase reactions

Inorganic uses of MS

Some recently reported apparatus

Samples Dissolved in DCM ESI MS McIndoe (U. Vic)

MALDI- TOF Fogg (U of O.)

Direct Introduction Methods

DART - Direct Analysis in Real Time Electrical discharge in He

LTP - Low Temperature Discharge

Dielectric barrier discharge in air

GD - Glow discharge Electrical discharge in He

all have poorly defined mechanisms

Atmospheric Pressure Photo ionization

APPI - electrical discharge in Krypton

Atmospheric Pressure Photo ionization

APPI - electrical discharge in Krypton

APPI has a LiF window, DART, LTD, GD's don't

GD

LTD

APPI mechanisms

Primary APPI

 $hv + A \rightarrow A^+ + e^-$

photoionization (+) tive

Secondary APPI (PICI)

$$hv + D \rightarrow D^{+} + e^{-} \rightarrow D^{+} + A \rightarrow A^{+} + D$$

$$e^{-} + D \rightarrow D^{-} \rightarrow D^{-} + A \rightarrow A^{-} + D$$

$$e^{-} + A \rightarrow A^{-}$$

dopant assisted (+) tive dopant assisted (-) tive photo induced e⁻ capture (-) tive

hv +
$$C_7H_8 \rightarrow C_7H_8^{*+} + e^- \rightarrow C_7H_8^{*+} + (CH_3OH)_3 \rightarrow C_7H_7^{*} + (CH_3OH)_3H^+$$

(CH₃OH)₃H⁺ + A \rightarrow **AH**⁺ + 3CH₃OH

Atmospheric Pressure Photo Ionization

Ions formed cold (excess energy in the departing electron) stable molecular ion

True ionization technique (ESI ion atomization)

Not as matrix dependent (APCI)

Photo Induced Chemical Ionization (PICI) radicals underestimated

With solvent: M+H+ without Solvents mostly M+

Waters MS/MS

Waters MS/MS naked

ionization chamber

Waters MS/MS

Waters MS/MS naked

ionization chamber

Waters MS/MS

Waters MS/MS naked

ionization chamber

Ferrocene Fe(C₅H₅)₂ 186.04 g/mol

MS/MS of Ferrocene Fe(C₅H₅)₂ 186.04 g/mol

Cr(acac)₃ 349.3 g/mol

MS/MS of Cr(acac)₃ 349.3 g/mol

LG 113 353.22 C₁₉H₁₃F₂N₃O₂

LG 113 353.22 C₁₉H₁₃F₂N₃O₂

LG 113 353.22 C₁₉H₁₃F₂N₃O₂

LG 159 316.35 C₂₀H₁₆N₂O₂

LG 159 316.35 C₂₀H₁₆N₂O₂

Conclusions

Rapid, analysis able to characterize synthetic compounds

Easy to use on existing APPI instruments

Inexpensive

Future work

Control choatic flows in source Quantification

Air sensitive compounds

Acknowledgements

Rob O'Brien Hendrik Kirsten (Wuppertal) Thorsten Benter (Wuppertal)

Funding: CFI, NSERC, Western Economic Development Fund

Lydia Gurley

References

Eelman, M. et al., Angew. Chem. Int. Ed., 2008, 47, 303-306.

Harper, H. et al., Anal. Chem., 2008, 80, 9097-9104.

Kersten, H. et al., J. Am. Soc. Mass. Spectrom. in press

Lubben, A. et al., Organometallics, 2008, 27, 3303-3306.

O'Brien, R. et al., Proceedings of the 55th ASMS Conference Indianapolis, IN, 2007.

Syage, J., J. Am. Soc. Mass. Spectrom., 2004, 15, 1521-1533.

Robb, D. et al., Anal. Chem., 2000, 72, 3653-3659.

Questions

Thank you

Davin Carter

