

Evaluation of a Nanospray Atmospheric Pressure-Electron Capture Dissociation (AP-ECD) Ionization Source for the Analysis of Post-Translational Modifications

Introduction

- Electron capture dissociation (ECD) and electron transfer dissociation (ETD) have emerged as powerful tools for the analysis of post-translational modifications.
- ECD and ETD are normally performed using late-model ion trapping instruments, in which peptide or protein ions are trapped, isolated, then reacted with electrons or anions to produce characteristic fragment ions.
- We have developed a novel in-source atmospheric pressure (AP)-ECD method as an alternative to conventional *in vacuo* ECD or ETD, capable of providing ECD functionality to all types of electrospray mass spectrometers, without modification of the instrument.
- Here, we demonstrate the use of AP-ECD in the LC/MS analysis of model phosphorylated and glycosylated peptides.

Figure 1. AP-ECD source.

- In operation, multiply-charged peptide ions are created within the spray chamber by the enclosed nanospray source. These ions are transported through the spray chamber by a flow of gas to a downstream source block whose central channel may be irradiated by the photoionization lamp; the source block is heated to "activate" the nanosprayed ions prior to and during ECD.
- When the lamp is switched off, peptide ions pass through unaffected, and the source operates as a normal nanospray source. When the lamp is switched on, photoelectrons are generated by photoionization of the dopant (e.g. acetone) added to the auxiliary (AUX) gas.
- Photoelectrons are then captured by the peptide ions in the downstream atmospheric pressure reaction/transport zone, resulting in ECD, and the fragment ions produced are delivered through the vacuum interface of the instrument for subsequent mass analysis.

Damon Robb,¹ Jason Rogalski,² Davin Carter,² Michael Blades,¹ and Juergen Kast²; The Department of Chemistry¹ and The Biomedical Research Centre,² The University of British Columbia, Vancouver, Canada

Experimental

- to mass analyzer **___**

- AP-ECD source: uses nanospray emitters (New Objective) for peptide ionization and a PID lamp (Heraeus Noblelight) for generation of electrons via photoionization of the acetone dopant (0.2 μl/min); the auxiliary gas is high-purity nitrogen (~9 slpm); source T ~120°C. See Figure 1.
- Mass Spectrometer: unmodified QStar XL Q-ToF from AB SCIEX; scan = TOF MS (2 sec accumulation/scan); interface Declustering Potential (DP) = 60/100 V (50/50 time split) for phosphopeptides, and 50/90 V for glycopeptides.
- Chromatography: LC Packings Ultimate with Famos autosampler; column = 15 cm x 75 μ m ID RP C18; flow = 300 nL/min; mobile phase: A = 0.1% formic acid in water, B = 0.1% FA in 80/20 acetonitrile/water; gradient = 10 - 50% B over 90 minutes for phosphopeptides and 10 - 40% B over 40 minutes for glycopeptides; 1 μ l full-loop injection.
- Samples: 0.1 μM solutions of phosphorylated and glycosylated peptides (from AnaSpec and ProteaBiosciences, respectively); 100 fmol oncolumn for each peptide.
- Data acquisition/processing: separate runs performed with lamp on and lamp off, to enable post-acquisition removal of CID products.

Figure 3. AP-ECD spectra of phosphorylated peptides (100 fmol). Phosphorylated peptides dissociate to produce high-coverage fragment ion sequence ladders, while retaining the modification in its native state. Charge-directing residues (especially arginine) likely affect the distribution of fragment ions produced (evident in **D**). In sum, high S/N for phosphorylation-containing fragment ions is achievable from low-fmol sample quantities.

	3: 2: 2: 2: 1: 1: 1: 1: 1: 1: 1: 1:
	A
	14.) 13.) 12.) 11.) 10.) 9.) 8.) 7.) 6.) 6.) 6.) 4.) 3.) 3.)
	2. 1. B
Figure 4. AP-	ECE
A. Glycosylate with no loss of	ed E of the
B. Glycosylate multiple proline the labile Gall	ed M nes, a NAc
• AP-ECD is	suit
 Method ser 	nsitiv
Performance	ce (s
 Sample pre source (bec 	ep ar ause
• AP-ECD co	buld

Results - Glycopeptides

D spectra of model glycopeptides (100 fmol).

- Erythropoietin (EPO) (117-131), demonstrating near-complete sequence coverage CID-labile GalNAc modification.
- MUC5AC 3, a difficult sample for ECD/ETD because there are no basic residues, and a y-ion isobaric with a c-ion; regardless, the spectrum again demonstrates that modification is retained during AP-ECD.

Conclusions

- table for the LC/MS analysis of phosphorylated and glycosylated peptides.
- ivity provides low-fmol on-column detection limits.
- sequence coverage) is comparable to "activated ion" ECD/ETD.
- and chromatography are required to isolate peptides prior to introduction to the se of parallel fragmentation).
- I be a useful tool for the targeted analysis of modified peptides and proteins.

Acknowledgments

- Major funding for this work was from an "Invention Tools, Techniques and Devices" Catalyst Grant from the Canadian Institutes for Health Research (CIHR).
- Additional funding was from a Discovery Grant from the Natural Sciences and Engineering Research Council (NSERC) of Canada, and also UBC.