Evaluation of a Nanospray Atmospheric Pressure-Electron Capture Dissociation (AP-ECD) Ionization Source for the Analysis of Post-Translational Modifications

Damon Robb, ${ }^{1}$ Jason Rogalski, ${ }^{2}$ Davin Carter, ${ }^{2}$ Michael Blades, ${ }^{1}$ and Juergen Kast ${ }^{2}$
The Department of Chemistry ${ }^{1}$ and The Biomedical Research Centre, ${ }^{2}$ The University of British Columbia, Vancouver, Canada

Abstract

\section*{Introduction} dissociation (ETD) have enerod powerful tools for the analysis of post-translational modifications. fragment ions. -We have developed a novel in-source atmospheric pressure (AP)-ECD method as an alternative to conventional in vacuo ECD or ETD, capable of providing ECD functionality to all types of electrospray mass spectrometers, without modification of the instrument -Here, we demonstrate the use of AP-ECD in the LC/MS analysis of model phosphorylated and glycosylated peptides.

AP-ECD Method

The AP-ECD source is comprised of a sprayer, a spray chamber, and a source block with hhotoionization detector (PID) lamp, suitable for use with any electrospray instrument

figure 1. AP-ECD source

In operation, multiply-charged pepitide ions are created within the spray chamber by the enclosed nanospray source. These ions are transported through the spray chamber by a flow of gas to a downstream source block whose central channel may be irradiated by the photoionization lamp; the source block is heated to "activate" the nanosprayed ions prior to and during ECD.

When the lamp is switched off, peptide ions pass through unaffected, and the source operates as normal nanospray source. When the lamp is switched on, photoelectrons are generated by photoionization of the dopant (e.g. acetone) added to the auxiliary (AUX) gas.
-Photoelectrons are then captured by the peptide ions in the downstream atmospheric pressure vacuum inter zone, resulting in ECD, and the fragment ions produced are delivered through the vacuum interface of the instrument for subsequent mass analysis.

Experimental

-AP-ECD source: uses nanospray emitters (New Objective) for peptide ionization and a PID lamp (Heraeus Noblelight) for generation of electrons via photoionization of the acetone dopant ($0.2 \mu / \mathrm{min}$); the auxiliary gas is high-purity nitrogen ($\sim 9 \mathrm{slpm}$); source $T \sim 120^{\circ} \mathrm{C}$. See Figure 1 Mass Spectrometer: unmodified QStar XL Q-TOF from AB SCIEX; scan = TOF MS (2 sec accumulation/scan); interface Declustering Potential (DP) $=60 / 100 \mathrm{~V}$ ($50 / 50$ time split) for phosphopeptides, and $50 / 90 \mathrm{~V}$ for glycopeptides.
Chromatography: LC Packings Ultimate with Famos autosampler; column $=15 \mathrm{~cm} \times 75 \mu \mathrm{~m}$ ID RP C18; flow $=300 \mathrm{~nL} / \mathrm{min}$; mobile phase: A $=$ 0.1% formic acid in water, $\mathrm{B}=0.1 \%$ FA in $80 / 20$ acetonitrile/water, gradient $=10-50 \%$ over 90 minutes for phosphopeptides and $10-40 \% \mathrm{~B}$ over 40 minutes for glycopeptides; 1 l f full-loop injection.

Samples: 0.1 uM solutions of phosphorylated and glycosylated peptides (from AnaSpec and ProteaBiosciences, respectively); 100 fmol on column for each peptide.
-Data acquisition/processing: separate runs performed with lamp on and lamp off, to enable post-acquisition removal of CID products.

Results - Phosphopeptides

Figure 2. AP-ECD base peak chromatogram of a phosphopeptide mixture (100 fmol each). Peak labels indicate spectra below.

Figure 3. AP-ECD spectra of phosphorylated peptides (100 fmol). Phosphorylated peptides dissociate to produce high-coverage fragment ion sequence ladders, while retaining the modification in its native state. Charge-directing residues (especially arginine) likely affect the distribution of fragment ions produced (evident in \mathbf{D}). In sum, high $S \mathbb{N}$ for phosphorylation-containing fragment ions is achievable from low-fmol sample quantities.

Figure 4. AP-ECD spectra of model glycopeptides (100 fmol).
A. Glycosylated Erythropoietin (EPO) (117-131), de
B. Glycosylated MUC5AC 3, a difficult sample for ECD/ETD because there are no basic residues, multiple prolines, and a y-ion isobaric with a c -ion; regardless, the spectrum again demonstrates that the labile GalNAc modification is retained during AP-ECD.

Conclusions

AP-ECD is suitable for the LC/MS analysis of phosphorylated and glycosylated peptides.

- Method sensitivity provides low-fmol on-column detection limits.
- Performance (sequence coverage) is comparable to "activated ion" ECD/ETD.
- Sample prep and chromatography are required to isolate peptides prior to introduction to the source (because of parallel fragmentation).
- AP-ECD could be a useful tool for the targeted analysis of modified peptides and proteins.

Acknowledgments

- Major funding for this work was from an "Invention - Tools, Techniques and Devices" Catalyst Grant from the Canadian Institutes for Health Research (CIHR).
-Additional funding was from a Discovery Grant from the Natural Sciences and Engineering Research Council (NSERC) of Canada, and also UBC.

